Obituary: Brian Marsden (1937-2010)

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Brian Geoffrey Marsden was born on 1937 August 5 in Cambridge, England. His father, Thomas, was the senior mathematics teacher at a local high school. It was his mother, Eileen (nee West), however, who introduced him to the study of astronomy, when he returned home on the Thursday during his first week in primary school in 1942 and found her sitting in the back yard watching an eclipse of the sun. Using now frowned-upon candle-smoked glass, they sat watching the changing bite out of the sun. What most impressed the budding astronomer, however, was not that the eclipse could be seen, but the fact that it had been predicted in advance, and it was the idea that one could make successful predictions of events in the sky that eventually led him to his career.
When, at the age of 11, he entered the Perse School in Cambridge he was developing primitive methods for calculating the positions of the planets. He soon realized that earlier astronomers had come up with more accurate procedures for doing this over the centuries, and during the next couple of years this led to his introduction to the library of the Cambridge University Observatories and his study of how eclipses, for example, could be precisely computed. Together with a couple of other students he formed a school Astronomical Society, of which he served as the secretary. At the age of 16 he joined and began regularly attending the monthly London meetings of the British Astronomical Association. He quickly became involved with the Association's Computing Section, which was known specifically for making astronomical predictions other than those that were routinely being prepared by professional astronomers for publication in almanacs around the world. Under the watchful eyes of the director and assistant director of the Computing Section, this led him to prepare and publish predictions of the occasions when one of Jupiter's moons could be seen to pass directly in front of another. He also calculated the gravitational effects of the planets on the dates and sky positions of the returns of some periodic comets. He carried out these computations using seven-place logarithms. After all, this was long before pocket calculators had been invented, and the construction of large electronic computers was still then very much in its infancy. He always maintained that making such computations by primitive means significantly increased one's understanding of the science involved. During his last year of high school he also became a junior member of the Royal Astronomical Society.
He was an undergraduate at New College, University of Oxford. In his first year there he persuaded the British Astronomical Association to lend him a mechanical calculating machine, allowing him thereby to increase his computational productivity. By the time he received his undergraduate degree, in mathematics, he had already developed somewhat of an international reputation for the computation of orbits of comets, including new discoveries. He spent part of his first two undergraduate summer vacations working at the British Nautical Almanac Office. He also responded to an inquiry from Dorothy L. Sayers involving the ancient Roman poet Lucan. Incensed by what she perceived as grossly unfair criticism of Lucan by A. E. Housman and Robert Graves, she elicited his assistance during the last year of her life to support her view that Lucan's understanding of astronomy and geography was reasonably valid. Dr. Sayers' extensive correspondence in the course of this study is included in the last volume of her collected letters.
After Oxford, he took up an invitation to cross the pond and work at the Yale University Observatory. He had originally planned to spend just a year there carrying out research on orbital mechanics, but on his arrival in 1959 he was also enrolled as a Yale graduate student. With the ready availability of the university's IBM 650 computer in the observatory building, he had soon programmed it to compute the orbits of comets. Recalling his earlier interest in Jupiter's moons, he completed the requirements for his Ph.D. degree with a thesis on "The Motions of the Galilean Satellites of Jupiter".
At the invitation of director Fred Whipple, he joined the staff of the Smithsonian Astrophysical Observatory in Cambridge (MA) in 1965. Dr. Whipple was probably best known for devising the "dirty snowball" model for the nucleus of a comet a decade and a half earlier. At that time there was only rather limited evidence that the motion of a comet was affected by forces over and above those of gravitation (limited because of the need to compute the orbit by hand), and the Whipple model had it that those forces were due to the comet's reaction to vaporization of the cometary snow or ice by solar radiation. Dr. Marsden therefore developed a way to incorporate such forces directly into the equations that governed the motion of a comet. Application of a computer program that included these nongravitational effects to several comets soon gave results that were nicely compatible with Dr. Whipple's original idea. Continued refinement of the nongravitational terms, much of it done in collaboration with Zdenek Sekanina, a Czech astronomer and friend of Dr. Marsden whom he and Dr. Whipple succeeded in bringing to the U.S. as a refugee following the Soviet invasion of Prague in 1968, resulted in a wealth of improved computations of cometary orbits by the time Dr. Sekanina moved to California in 1980. It is noteworthy that the procedure devised and developed by Dr. Marsden is still widely used to compute the nongravitational effects of comets, with relatively little further modification by other astronomers.
The involvement of the Smithsonian Astrophysical Observatory with comets had been given a boost, shortly before Dr. Marsden's arrival there, by the transfer there from Copenhagen of the office of the Central Bureau for Astronomical Telegrams, a quaintly named organization that was established by the International Astronomical Union soon after its founding in 1920. The CBAT is responsible for disseminating information worldwide about the discoveries of comets, novae, supernovae and other objects of generally transient astronomical interest. It is the CBAT that actually names the comets (generally for their discoverers), and it has also been a repository for the observations of comets to which orbit computations need to be fitted. Dr. Marsden succeeded Dr. Owen Gingerich as the CBAT director in 1968. He was joined by Daniel Green as a student assistant a decade later, and Dr. Green took over as CBAT director in 2000. Until the early 1980s the Bureau really did receive and disseminate the discovery information by telegram (with dissemination also by postcard Circular), although e-mail announcements then understandably began to take over. The last time the CBAT received a telegram was when Thomas Bopp sent word of his discovery of a comet in 1995. Since word of this same discovery had already been received from Alan Hale a few hours earlier by e-mail, the object was very nearly just named Comet Hale, rather than the famous Comet Hale-Bopp that beautifully graced the world's skies for several weeks two years later.
The comet prediction of which he was most proud was of the return of comet Swift-Tuttle, which is the comet associated with the Perseid meteors each August. It had been discovered in 1862, and the conventional wisdom was that it would return around 1981. He followed that line for much of a paper he published on the subject in 1973. He had a strong suspicion, however, that the 1862 comet was identical with one seen in 1737, and this assumption allowed him to predict that Swift-Tuttle would not return until late-1992. This prediction proved to be correct, and this comet has the longest orbital period of all the comets whose returns have been successfully predicted.
Although the CBAT also traditionally made announcements of the discoveries of asteroids that came close to the earth, the official organization for attending to discoveries of

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Obituary: Brian Marsden (1937-2010) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Obituary: Brian Marsden (1937-2010), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Obituary: Brian Marsden (1937-2010) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1606501

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.