Astronomy and Astrophysics – Astrophysics
Scientific paper
Nov 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006a%26a...458..679y&link_type=abstract
Astronomy and Astrophysics, Volume 458, Issue 3, November II 2006, pp.679-686
Astronomy and Astrophysics
Astrophysics
7
Magnetohydrodynamics (Mhd), Accretion, Accretion Disks, Stars: Magnetic Fields, Ism: Evolution, Methods: Numerical
Scientific paper
Aims.We present the results of the numerical simulations of the interaction between a magnetized star and an imperfectly conducting accretion disk. The star is rotating with constant angular velocity. The differentially rotating Keplerian disk is treated as a boundary condition. We are interested in the magnetic field topology dependence on the electrical conductivity of the disk. Methods: .To analyze the "star-disk" interaction we numerically investigate the MHD equations using Godunov-type high resolution numerical methods. Results: .It was found that in our model the "star-disk" interaction occurs with a quasi-periodic reconnection of the magnetic field coronal loops and plasmoid ejections. In the case of the perfect disk conductivity, the evolution of the coronal magnetic field leads to the periodic outflow of angular momentum from the disk. In the case of an imperfectly conducting disk, the configuration of the magnetic field is formed such that the disk angular momentum carried by the magnetic field is balanced by angular momentum carried by matter. It should be noted that we used the ideal MHD equation to obtain the solutions. The reconnection process in the disk corona depends on the numerical diffusivity that exists in our numerical code. Our simulations treat reconnection as occurring in current sheets. The thickness of the current sheet is broadened by numerical resistivity. Nevertheless, we suppose that the reconnection and plasmoid ejection takes place as well for real magnetic diffusivity. To verify the method and results we also used several more detailed grids to estimate the numerical diffusivity of the scheme. It is turned out that the setup model presented in the paper quite reasonable satisfies the goal of this paper, i.e., to investigate the regime of interaction between the magnetized star and the disk.
Koldoba Alexander V.
Ustyugova Galina V.
Yelenina T. G.
No associations
LandOfFree
Numerical simulations of the interaction of accretion disks with young star magnetospheres does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Numerical simulations of the interaction of accretion disks with young star magnetospheres, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical simulations of the interaction of accretion disks with young star magnetospheres will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1309848