Mathematics – Analysis of PDEs
Scientific paper
2009-07-17
Mathematics
Analysis of PDEs
17 pages with 9 figures
Scientific paper
We present numerical simulations of the defocusing nonlinear Schrodinger (NLS) equation with an energy supercritical nonlinearity. These computations were motivated by recent works of Kenig-Merle and Kilip-Visan who considered some energy supercritical wave equations and proved that if the solution is {a priori} bounded in the critical Sobolev space (i.e. the space whose homogeneous norm is invariant under the scaling leaving the equation invariant), then it exists for all time and scatters. In this paper, we numerically investigate the boundedness of the $H^2$-critical Sobolev norm for solutions of the NLS equation in dimension five with quintic nonlinearity. We find that for a class of initial conditions, this norm remains bounded, the solution exists for long time, and scatters.
Colliander James
Simpson Gideon
Sulem Catherine
No associations
LandOfFree
Numerical simulations of the energy- supercritical Nonlinear Schrödinger equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Numerical simulations of the energy- supercritical Nonlinear Schrödinger equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical simulations of the energy- supercritical Nonlinear Schrödinger equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-111165