Numerical Simulations of Supergranular Magnetoconvection

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The complex interactions between the turbulent fluid motions within the solar convection zone and the related processes of emergence, evolution, and cancellation of magnetic field at the photosphere have received much recent attention. It is likely that such interactions depend on the relative magnitudes of the field and of the flows, but the details of this coupling are not well understood. To further investigate the magnetohydrodynamics within such turbulent convection, we have constructed several idealized simulations of fully compressible MHD fluids, each contained within a curved, spherical segment that approximates a localized volume of subphotospheric convection on the sun. In some cases, the horizontal extent of the computational volume spans 30 heliographic degrees in both latitude and longitude, thereby enabling the dynamics within a large field containing approximately 100 supergranular-sized cells to be studied. By varying the amount of total (unsigned) flux permeating the domain, we are able to investigate analogs to patches of subsurface convection that generally resemble either quiet-sun or active regions when viewed from above. In addition, simplified potential-field extrapolations into the volume above the computational domain are used to illustrate how the coronal field topology might behave in response to the continually evolving magnetic field within the convecting layers. This work was supported by NASA through grant NAG 5-3077 to Stanford University and by Lockheed Martin Independent Research and Development funds.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Numerical Simulations of Supergranular Magnetoconvection does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Numerical Simulations of Supergranular Magnetoconvection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical Simulations of Supergranular Magnetoconvection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1717083

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.