Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2011-07-14
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
22 figures, accepted for publication in PRD
Scientific paper
Spherically symmetric, time-periodic oscillatons -- solutions of the Einstein-Klein-Gordon system (a massive scalar field coupled to gravity) with a spatially localized core -- are investigated by very precise numerical techniques based on spectral methods. In particular the amplitude of their standing-wave tail is determined. It is found that the amplitude of the oscillating tail is very small, but non-vanishing for the range of frequencies considered. It follows that exactly time-periodic oscillatons are not truly localized, and they can be pictured loosely as consisting of a well (exponentially) localized nonsingular core and an oscillating tail making the total mass infinite. Finite mass physical oscillatons with a well localized core -- solutions of the Cauchy-problem with suitable initial conditions -- are only approximately time-periodic. They are continuously losing their mass because the scalar field radiates to infinity. Their core and radiative tail is well approximated by that of time-periodic oscillatons. Moreover the mass loss rate of physical oscillatons is estimated from the numerical data and a semi-empirical formula is deduced. The numerical results are in agreement with those obtained analytically in the limit of small amplitude time-periodic oscillatons.
Fodor Gyula
Forgacs Peter
Grandclement Philippe
No associations
LandOfFree
Numerical simulation of oscillatons: extracting the radiating tail does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Numerical simulation of oscillatons: extracting the radiating tail, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical simulation of oscillatons: extracting the radiating tail will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-225124