Statistics – Computation
Scientific paper
Apr 1982
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1982chjss...2..152y&link_type=abstract
Chinese Journal of Space Sciences, vol. 2, April 1982, p. 152-159. In Chinese, with abstract in English.
Statistics
Computation
Atmospheric Models, Computational Fluid Dynamics, Shock Wave Propagation, Small Perturbation Flow, Solar Atmosphere, Wave Equations, Compressible Flow, Gravitational Effects, Nonlinear Equations, One Dimensional Flow, Polytropic Processes
Scientific paper
The upward propagation and evolution of different kinds of perturbations in the solar atmosphere are computed using HSRA as the unperturbed model. A one-dimensional compressive flow equation under gravitational acceleration at the solar surface is used as the dynamical equation. Polytropic gas equations with different gamma-primes are used to close this equation set. The results show that an upward-propagated small perturbation can evolve into shocks at certain heights which are nearly independent of the thermodynamic processes involved, but depend strongly on the strength of the initial perturbation. However, the existence interference of the turbulent field in the solar atmosphere does not allow these perturbations to develop into shocks. This confirms the notion that the mechanical waves generated in the convection zone are not very effective in heating the chromosphere and the corona.
Shen Chang-Jun
Yin Chun-Lin
No associations
LandOfFree
Numerical computations of non-linear waves in solar atmosphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Numerical computations of non-linear waves in solar atmosphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical computations of non-linear waves in solar atmosphere will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-841258