Computer Science – Performance
Scientific paper
Jan 1983
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1983apopt..22...12b&link_type=abstract
Applied Optics, vol. 22, Jan. 1, 1983, p. 12, 13.
Computer Science
Performance
3
Hyperbolic Systems, Lens Design, Mirrors, Optical Reflection, Performance Tests, Reflecting Telescopes, Aberration, Convexity, Error Analysis, Focusing, Null Zones, Ray Tracing, Surface Geometry, Wave Front Deformation
Scientific paper
A new null test related to the Gaviola (1939) test is suggested. This variation calls for the construction of a null lens that eliminates the second set of measurements, giving an immediate null with the first testing. Calculations are set forth showing the required surface figure of this auxiliary null lens to be hyperbolic instead of spherical. The perfect focusing properties of this null lens render it easy to figure. The only restriction on this test relates the mirror amplification factor m (the ratio of primary mirror and system focal lengths) to the refractive index of the null lens. In this case, however, the restriction is not severe since the null lens is used only in the optical testing phase, and commonly available glasses allow m to range from 1.71 to 3.51, sufficient to cover most telescope designs. Ray tracing results are given for a typical case, together with the residual wave front error. Also discussed are the effects of small lens variations.
No associations
LandOfFree
Null test for hyperbolic convex mirrors does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Null test for hyperbolic convex mirrors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Null test for hyperbolic convex mirrors will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1196306