Mathematics – Numerical Analysis
Scientific paper
2011-03-02
Mathematics
Numerical Analysis
Scientific paper
We revisit the normality preserving augmentation of normal matrices studied by Ikramov and Elsner in 1998 and complement their results by showing how the eigenvalues of the original matrix are perturbed by the augmentation. Moreover, we construct all augmentations that result in normal matrices with eigenvalues on a quadratic curve in the complex plane, using the stratification of normal matrices presented by Huhtanen in 2001. To make this construction feasible, but also for its own sake, we study normality preserving normal perturbations of normal matrices. For $2\times 2$ and for rank-1 matrices, the analysis is complete. For higher rank, all essentially Hermitian normality perturbations are described. In all cases, the effect of the perturbation on the eigenvalues of the original matrix is given. The paper is concluded with a number of explicit examples that illustrate the results and constructions.
Brandts Jan H.
da Silva Ricardo Reis
No associations
LandOfFree
Normalitity preserving perturbations and augmentations and their effect on the eigenvalues does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Normalitity preserving perturbations and augmentations and their effect on the eigenvalues, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Normalitity preserving perturbations and augmentations and their effect on the eigenvalues will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-474105