Normalité projective des varétés magnifiques de rang 1

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages, version 2 : correction du lemme 2.1, une r\'ef\'erence ajout\'ee

Scientific paper

Let $L$ and $L'$ be two invertible sheaves over a projective variety $X$. We suppose that $L$ and $L'$ are generated by their global section spaces $\Gamma(L)$ and $\Gamma(L')$. We prove in this article that the morphism : \[\Gamma(L) \otimes \Gamma(L') \to \Gamma(L \otimes L')\] is surjective, in the case where $X$ is a rank one wonderful variety. In particular, the cone over a rank one wonderful variety defined by a very ample invertible sheaf is always normal. Soient $L$ et $L'$ deux faisceaux inversibles sur une vari\'et\'e projective $X$. On suppose que $L$ et $L'$ sont engendr\'es par leurs espaces de sections globales $\Gamma(L)$ et $\Gamma(L')$. On d\'emontre dans cet article que le morphisme : \[\Gamma(L) \otimes \Gamma(L') \to \Gamma(L \otimes L')\] est surjectif, dans le cas o\`u $X$ est une vari\'et\'e magnifique de rang 1. En particulier, le c\^one au-dessus d'une vari\'et\'e magnifique $X$ de rang 1 d\'efini par un faisceau inversible tr\`es ample est toujours normal.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Normalité projective des varétés magnifiques de rang 1 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Normalité projective des varétés magnifiques de rang 1, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Normalité projective des varétés magnifiques de rang 1 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-440736

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.