Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics
Scientific paper
2009-06-17
Phys.Rev.E80:066315,2009
Astronomy and Astrophysics
Astrophysics
Galaxy Astrophysics
31 pages: typos corrected & references added
Scientific paper
10.1103/PhysRevE.80.066315
We study large-scale dynamo action due to turbulence in the presence of a linear shear flow. Our treatment is quasilinear and equivalent to the standard `first order smoothing approximation'. However it is non perturbative in the shear strength. We first derive an integro-differential equation for the evolution of the mean magnetic field, by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. We show that, for non helical turbulence, the time evolution of the cross-shear components of the mean field do not depend on any other components excepting themselves; this is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence, to all orders in the shear parameter, there is no shear-current type effect for non helical turbulence in a linear shear flow, in quasilinear theory in the limit of zero resistivity. We then develop a systematic approximation of the integro-differential equation for the case when the mean magnetic field varies slowly compared to the turbulence correlation time. For non-helical turbulence, the resulting partial differential equations can again be solved by making a shearing coordinate transformation in Fourier space. The resulting solutions are in the form of shearing waves, labeled by the wavenumber in the sheared coordinates. These shearing waves can grow at early and intermediate times but are expected to decay in the long time limit.
Sridhar Srinath
Subramanian Kandaswamy
No associations
LandOfFree
Nonperturbative quasilinear approach to the shear dynamo problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nonperturbative quasilinear approach to the shear dynamo problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonperturbative quasilinear approach to the shear dynamo problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-222330