Mathematics – Statistics Theory
Scientific paper
2007-10-18
Annals of Statistics 2007, Vol. 35, No. 4, 1512-1534
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.1214/009053606000001442 the Annals of Statistics (http://www.imstat.org/aos/) by the Inst
Scientific paper
10.1214/009053606000001442
The removal of blur from a signal, in the presence of noise, is readily accomplished if the blur can be described in precise mathematical terms. However, there is growing interest in problems where the extent of blur is known only approximately, for example in terms of a blur function which depends on unknown parameters that must be computed from data. More challenging still is the case where no parametric assumptions are made about the blur function. There has been a limited amount of work in this setting, but it invariably relies on iterative methods, sometimes under assumptions that are mathematically convenient but physically unrealistic (e.g., that the operator defined by the blur function has an integrable inverse). In this paper we suggest a direct, noniterative approach to nonparametric, blind restoration of a signal. Our method is based on a new, ridge-based method for deconvolution, and requires only mild restrictions on the blur function. We show that the convergence rate of the method is close to optimal, from some viewpoints, and demonstrate its practical performance by applying it to real images.
Hall Peter
Qiu Peihua
No associations
LandOfFree
Nonparametric estimation of a point-spread function in multivariate problems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nonparametric estimation of a point-spread function in multivariate problems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonparametric estimation of a point-spread function in multivariate problems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-461115