Statistics – Applications
Scientific paper
Oct 1990
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1990esrv...29..385h&link_type=abstract
Earth Science Reviews, Volume 29, Issue 1-4, p. 385-399.
Statistics
Applications
4
Scientific paper
Double-diffusive convection (D.D.C.) is a nonlinear fluid-dynamical phenomenon, driven by thermal and compositional effects on the density. We discuss the nature of subcritical, finite-amplitude, double-diffusive convection for infinite Prandtl number and large Lewis number,Le, which have applications in magma chambers and at the D″-layer at the core-mantle boundary (CMB). Numerical solutions by two-dimensional, finite-element method are presented to portray the nature of time-dependent D.D.C. in both the diffusive and the finger regimes. The compositional heterogeneities at the CMB are far more complex than the local thermal structure because of the largeLe and may have important implications for the scattering of seismic waves off the CMB. The effects of increasing the buoyancy ratioRρ are to suppress time-dependent D.D.C. even at highRa. In narrow slots shear-heating instabilities can be triggered in the finger regime by the abrupt overturn of the compositional interface. This phenomenon may occur in tall magma chambers with low dissipation numbers of of order 0 (0.01).
Hansen Ulrich
Yuen David A.
No associations
LandOfFree
Nonlinear physics of double-diffusive convection in geological systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nonlinear physics of double-diffusive convection in geological systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonlinear physics of double-diffusive convection in geological systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1303582