Nonabelian cohomology of compact Lie groups

Mathematics – Group Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7 pages

Scientific paper

Given a Lie group $G$ with finitely many components and a compact Lie group A
which acts on $G$ by automorphisms, we prove that there always exists an
A-invariant maximal compact subgroup K of G, and that for every such K, the
natural map $H^1(A,K)\to H^1(A,G)$ is bijective. This generalizes a classical
result of Serre [6] and a recent result in [1].

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Nonabelian cohomology of compact Lie groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Nonabelian cohomology of compact Lie groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonabelian cohomology of compact Lie groups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-329483

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.