Newton's method on Graßmann manifolds

Mathematics – Optimization and Control

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

36 pages, typos corrected and references added

Scientific paper

A general class of Newton algorithms on Gra{\ss}mann and Lagrange-Gra{\ss}mann manifolds is introduced, that depends on an arbitrary pair of local coordinates. Local quadratic convergence of the algorithm is shown under a suitable condition on the choice of coordinate systems. Our result extends and unifies previous convergence results for Newton's method on a manifold. Using special choices of the coordinates, new numerical algorithms are derived for principal component analysis and invariant subspace computations with improved computational complexity properties.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Newton's method on Graßmann manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Newton's method on Graßmann manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Newton's method on Graßmann manifolds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-616077

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.