Computer Science – Networking and Internet Architecture
Scientific paper
2008-03-05
Computer Science
Networking and Internet Architecture
Scientific paper
Distributed storage systems provide reliable access to data through redundancy spread over individually unreliable nodes. Application scenarios include data centers, peer-to-peer storage systems, and storage in wireless networks. Storing data using an erasure code, in fragments spread across nodes, requires less redundancy than simple replication for the same level of reliability. However, since fragments must be periodically replaced as nodes fail, a key question is how to generate encoded fragments in a distributed way while transferring as little data as possible across the network. For an erasure coded system, a common practice to repair from a node failure is for a new node to download subsets of data stored at a number of surviving nodes, reconstruct a lost coded block using the downloaded data, and store it at the new node. We show that this procedure is sub-optimal. We introduce the notion of regenerating codes, which allow a new node to download \emph{functions} of the stored data from the surviving nodes. We show that regenerating codes can significantly reduce the repair bandwidth. Further, we show that there is a fundamental tradeoff between storage and repair bandwidth which we theoretically characterize using flow arguments on an appropriately constructed graph. By invoking constructive results in network coding, we introduce regenerating codes that can achieve any point in this optimal tradeoff.
Dimakis Alexandros G.
Godfrey Brighten P.
Ramchandran Kannan
Wainwright Martin J.
Wu Yunnan
No associations
LandOfFree
Network Coding for Distributed Storage Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Network Coding for Distributed Storage Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network Coding for Distributed Storage Systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-160966