Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2010-10-06
Phys.Rev.D83:062003,2011
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
7 pages, 3 figures
Scientific paper
10.1103/PhysRevD.83.062003
We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a "negative inertia", which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass Standard Quantum Limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancelation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise cancelation schemes. We show that it is feasible to demonstrate such an effect with the {\it Gingin High Optical Power Test Facility}, and it can eventually be implemented in future advanced GW detectors.
Chen Yanbei
Danilishin Stefan
Khalili Farid
Miao Haixing
Mueller-Ebhardt Helge
No associations
LandOfFree
Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-427484