Computer Science – Information Theory
Scientific paper
2012-03-11
Computer Science
Information Theory
Submitted to Transactions on Information Theory
Scientific paper
We introduce a discrete network corresponding to any Gaussian wireless network that is obtained by simply quantizing the received signals and restricting the transmitted signals to a finite precision. Since signals in the discrete network are obtained from those of a Gaussian network, the Gaussian network can be operated on the quantization-based digital interface defined by the discrete network. We prove that this digital interface is near-optimal for Gaussian relay networks and the capacities of the Gaussian and the discrete networks are within a bounded gap of O(M^2) bits, where M is the number of nodes. We prove that any near-optimal coding strategy for the discrete network can be naturally transformed into a near-optimal coding strategy for the Gaussian network merely by quantization. We exploit this by designing a linear coding strategy for the case of layered discrete relay networks. The linear coding strategy is near-optimal for Gaussian and discrete networks and achieves rates within O(M^2) bits of the capacity, independent of channel gains or SNR. The linear code is robust and the relays need not know the channel gains. The transmit and receive signals at all relays are simply quantized to binary tuples of the same length $n$ . The linear network code requires all the relay nodes to collect the received binary tuples into a long binary vector and apply a linear transformation on the long vector. The resulting binary vector is split into smaller binary tuples for transmission by the relays. The quantization requirements of the linear network code are completely defined by the parameter $n$, which also determines the resolution of the analog-to-digital and digital-to-analog convertors for operating the network within a bounded gap of the network's capacity. The linear network code explicitly connects network coding for wireline networks with codes for Gaussian networks.
Kumar Ravi P.
Muralidhar Anand
No associations
LandOfFree
Near-optimal quantization and linear network coding for relay networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Near-optimal quantization and linear network coding for relay networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Near-optimal quantization and linear network coding for relay networks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-14469