Computer Science – Information Theory
Scientific paper
2006-02-09
Computer Science
Information Theory
17 Pages, two-columns. Accepted for publication in IEEE Trans. on Inform. Th
Scientific paper
In this paper we derive analytical expressions for the central and side quantizers which, under high-resolutions assumptions, minimize the expected distortion of a symmetric multiple-description lattice vector quantization (MD-LVQ) system subject to entropy constraints on the side descriptions for given packet-loss probabilities. We consider a special case of the general n-channel symmetric multiple-description problem where only a single parameter controls the redundancy tradeoffs between the central and the side distortions. Previous work on two-channel MD-LVQ showed that the distortions of the side quantizers can be expressed through the normalized second moment of a sphere. We show here that this is also the case for three-channel MD-LVQ. Furthermore, we conjecture that this is true for the general n-channel MD-LVQ. For given source, target rate and packet-loss probabilities we find the optimal number of descriptions and construct the MD-LVQ system that minimizes the expected distortion. We verify theoretical expressions by numerical simulations and show in a practical setup that significant performance improvements can be achieved over state-of-the-art two-channel MD-LVQ by using three-channel MD-LVQ.
Heusdens Richard
Jensen Jesper
Ostergaard Jan
No associations
LandOfFree
n-Channel Entropy-Constrained Multiple-Description Lattice Vector Quantization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with n-Channel Entropy-Constrained Multiple-Description Lattice Vector Quantization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and n-Channel Entropy-Constrained Multiple-Description Lattice Vector Quantization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-568111