Muon Observations

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10

Scientific paper

Muon observations are complementary to neutron monitor observations but there are some important differences in the two techniques. Unlike neutron monitors, muon telescope systems use coincidence techniques to obtain directional information about the arriving particle. Neutron monitor observations require simple corrections for pressure variations to compensate for the varying mass of atmospheric absorber over a site. In contrast, muon observations require additional corrections for the positive and negative temperature effects. Muon observations commenced many years before neutron monitors were constructed. Thus, muon data over a larger number of solar cycles is available to study solar modulation on anisotropies and other cosmic ray variations. The solar diurnal and semi-diurnal variations have been studied for many years. Using the techniques of Bieber and Chen it has been possible to derive the radial gradient, parallel mean-free path and symmetric latitude gradient of cosmic rays for rigidities <200 GV. The radial gradient varies with the 11-year solar activity cycle whereas the parallel mean-free path appears to vary with the 22-year solar magnetic cycle. The symmetric latitudinal gradient reverses at each solar polarity reversal. These results are in general agreement with predictions from modulation models. In undertaking these analyses the ratio of the parallel to perpendicular mean-free path must be assumed. There is strong contention in the literature about the correct value to employ but the results are sufficiently robust for this to be, at most, a minor problem. An asymmetric latitude gradient of highly variable nature has been found. These observations do not support current modulation models. Our view of the sidereal variation has undergone a revolution in recent times. Nagashima, Fujimoto and Jacklyn proposed a narrow Tail-In source anisotropy and separate Loss-Cone anisotropy as being responsible for the observed variations. A new analysis technique, more amenable to such structures, was developed by Japanese and Australian researchers. They confirmed the existence of the two anisotropies. However, they found that the Tail-In anisotropy is asymmetric and that both anisotropies had different positions from the prediction. Most 27-day modulations are observed at neutron monitor rigidities but not so readily at higher rigidities. An exception to this is the Isotropic Intensity Wave modulation observed in the early 1980s and again in 1991. This modulation is very strongly related to the heliospheric sector structure and implies a significantly different cosmic ray density on either side of the neutral sheet. The interpretation of most cosmic ray modulation phenomena requires good latitude coverage in both hemispheres. The closure of many muon observatories is a matter of concern. In the northern hemisphere a few new instruments are being constructed and spatial coverage is barely adequate. In the southern hemisphere the situation is far worse with the possibility that within a decade only the Mawson observatory in Antarctica will still be in operation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Muon Observations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Muon Observations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Muon Observations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1484271

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.