Multivariate supOU processes

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Published in at http://dx.doi.org/10.1214/10-AAP690 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Inst

Scientific paper

10.1214/10-AAP690

Univariate superpositions of Ornstein--Uhlenbeck-type processes (OU), called supOU processes, provide a class of continuous time processes capable of exhibiting long memory behavior. This paper introduces multivariate supOU processes and gives conditions for their existence and finiteness of moments. Moreover, the second-order moment structure is explicitly calculated, and examples exhibit the possibility of long-range dependence. Our supOU processes are defined via homogeneous and factorizable L\'{e}vy bases. We show that the behavior of supOU processes is particularly nice when the mean reversion parameter is restricted to normal matrices and especially to strictly negative definite ones. For finite variation L\'{e}vy bases we are able to give conditions for supOU processes to have locally bounded c\`{a}dl\`{a}g paths of finite variation and to show an analogue of the stochastic differential equation of OU-type processes, which has been suggested in \cite barndorffnielsen01 in the univariate case. Finally, as an important special case, we introduce positive semi-definite supOU processes, and we discuss the relevance of multivariate supOU processes in applications.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Multivariate supOU processes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Multivariate supOU processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multivariate supOU processes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-400805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.