Mathematics – Statistics Theory
Scientific paper
2008-06-18
Annals of Statistics 2008, Vol. 36, No. 3, 1299-1323
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.1214/07-AOS505 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Scientific paper
10.1214/07-AOS505
This paper introduces and studies multivariate spacings. The spacings are developed using the order statistics derived from data depth. Specifically, the spacing between two consecutive order statistics is the region which bridges the two order statistics, in the sense that the region contains all the points whose depth values fall between the depth values of the two consecutive order statistics. These multivariate spacings can be viewed as a data-driven realization of the so-called ``statistically equivalent blocks.'' These spacings assume a form of center-outward layers of ``shells'' (``rings'' in the two-dimensional case), where the shapes of the shells follow closely the underlying probabilistic geometry. The properties and applications of these spacings are studied. In particular, the spacings are used to construct tolerance regions. The construction of tolerance regions is nonparametric and completely data driven, and the resulting tolerance region reflects the true geometry of the underlying distribution. This is different from most existing approaches which require that the shape of the tolerance region be specified in advance. The proposed tolerance regions are shown to meet the prescribed specifications, in terms of $\beta$-content and $\beta$-expectation. They are also asymptotically minimal under elliptical distributions. Finally, a simulation and comparison study on the proposed tolerance regions is presented.
Li Jun
Liu Regina Y.
No associations
LandOfFree
Multivariate spacings based on data depth: I. Construction of nonparametric multivariate tolerance regions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Multivariate spacings based on data depth: I. Construction of nonparametric multivariate tolerance regions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multivariate spacings based on data depth: I. Construction of nonparametric multivariate tolerance regions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-272765