Multipole moments of stellar oscillation modes

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6

Astronomical Models, Mathematical Models, Moments, Multipoles, Neutron Stars, Relativistic Effects, Stellar Oscillations, Gravitational Waves, Series Expansion, Spherical Harmonics, Stellar Models, Tidal Waves

Scientific paper

The oscillating mass 2l-pole moment, Mnl, of a star in a given (normalized) oscillation mode determines the energy that can be absorbed by the mode in a tidal interaction and the power radiated by the mode in gravitational waves, both of which are proportional to (absolute value of Mnl)2. The coefficients in the expansion of the vector fields del(rlYlm(theta, phi)) in terms of the displacement fields of modes of given l and m are proportional to Mnl. This expansion leads to a sum rule sum over n(absolute value of Mnl)2 = constant. For stars of weak to moderate central condensation (such as neutron stars), the f-mode is well approximated by the vector field being expanded, and therefore it takes the lion's share of the sum. Thus the multipole moments of all other modes must be small. In there numerical evaluation, it is necessary to know the shape of the eigenfunctions quite precisly, since a small f-mode contamination can significantly increase the obtained values. This contamination occurs in some `hybrid' numerical computations of neutron star oscillations with relativistic equilibrium stars and Newtonian dynamics (e.g., McDermott et al. 1988). In this case, it is due to a slight inconsistency in the models and leads to a large overestimate of the power radiated in gravitational waves by modes other than the f-mode, although their oscillation periods are nearly unaffected.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Multipole moments of stellar oscillation modes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Multipole moments of stellar oscillation modes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multipole moments of stellar oscillation modes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1787818

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.