Astronomy and Astrophysics – Astronomy
Scientific paper
Jan 2012
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012cemda.112...47k&link_type=abstract
Celestial Mechanics and Dynamical Astronomy, Volume 112, Issue 1, pp.47-74
Astronomy and Astrophysics
Astronomy
Quasiperiodic Orbit, Quasi-Halo, Lissajous Orbit, Restricted Three-Body Problem, Poincaré Section
Scientific paper
A new fully numerical method is presented which employs multiple Poincaré sections to find quasiperiodic orbits of the Restricted Three-Body Problem (RTBP). The main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior near chaotic regions that leads to full convergence for given family of quasiperiodic orbits and the minimal memory required to store these orbits. This method reduces the calculations required for searching two-dimensional invariant tori to a search for closed orbits, which are the intersection of the invariant tori with the Poincaré sections. Truncated Fourier series are employed to represent these closed orbits. The flow of the differential equation on the invariant tori is reduced to maps between the consecutive Poincaré maps. A Newton iteration scheme utilizes the invariance of the circles of the maps on these Poincaré sections in order to find the Fourier coefficients that define the circles to any given accuracy. A continuation procedure that uses the incremental behavior of the Fourier coefficients between close quasiperiodic orbits is utilized to extend the results from a single orbit to a family of orbits. Quasi-halo and Lissajous families of the Sun-Earth RTBP around the L2 libration point are obtained via this method. Results are compared with the existing literature. A numerical method to transform these orbits from the RTBP model to the real ephemeris model of the Solar System is introduced and applied.
Gurfil Pini
Kasdin Jeremy N.
Kolemen Egemen
No associations
LandOfFree
Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-909509