MRO Context Camera (CTX) Investigation Primary Mission Results

Computer Science – Performance

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5400 Planetary Sciences: Solid Surface Planets, 5470 Surface Materials And Properties, 5480 Volcanism (6063, 8148, 8450), 5494 Instruments And Techniques

Scientific paper

The Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) acquires panchromatic images of Mars at ~6 m/pixel; the majority cover areas 30 km wide by 43 to 313 km long. As of 31 August 2008, 36% of Mars was imaged at 6 m/pixel and 10.8% was covered more than once. Areas imaged multiple times include stereopairs and locations covered repeatedly to monitor dust-raising events, seasonal frost patterns, or landforms and albedo features known or anticipated to change. CTX provides context for data acquired by other MRO science instruments, as well. Using our knowledge of imaging performance as a function of seasonal atmospheric, frost, and insolation conditions from the 4 Mars-year Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) investigation, we undertook several time-dependent campaigns to create 6 m/pixel mosaics of regions such as Hellas Planitia, the south polar residual cap (covered in spring and in summer), and the north polar region. In addition, we obtained 6 m/pixel mosaics of the Valles Marineris, Sinus Meridiani, Marte Valles, Athabasca Valles, portions of the northern plains, fretted terrain and chaotic terrain, large volcanoes, yardang-forming materials in Amazonis and Aeolis, the small volcanoes and platy flows south of Cerberus, and many other regions. We monitored thousands of mid-latitude gullies, and we used our MOC experience to target dust-raising events that repeat every year at the same locations. Retreat of cliffs formed in layers of CO2 ice in the south polar cap was observed for the 5th southern summer since 1999. Dozens of new impact craters and crater clusters were observed; all formed since 1999 and some formed during the MRO Primary Mission. We routinely re-targeted the new impact sites to see how they change and alert other MRO instrument teams so they could observe them. CTX images of the cratered highlands emphasize the view that the upper crust of Mars is layered with interbedded filled and buried valleys, fluvial channels, and impact craters ranging in diameter from meters to hundreds of kilometers. CTX observations reiterate a critical MOC result regarding small, sub-kilometer diameter craters: the substrates most resistant to erosion retain the most small craters (and the boulders produced by the impacts). CTX images provide many examples in which a younger, harder substrate (e.g., a lava flow) is more heavily cratered (with < 1 km diameter craters) than subjacent, older rock units. One example occurs in the form of lava flows located immediately west of Meridiani Planum; similar flows underlie the hematite-bearing, plains- forming rock in nearby Miyamoto Crater. Northern Meridiani also exhibits exhumed, low-order streams (of the scale of hillslope rills and creeks); these were filled, buried, lithified, and later returned to the surface by erosion-some of them in inverted form. Terrain immediately west of Juventae Chasma exhibits similar inverted streams and rills that were first documented by MOC and provide key evidence for rainfall and hillslope runoff. CTX data show that there are many hundreds of inverted fluvial channels, of a variety of sizes, all over the planet, especially in Arabia Terra, Solis Planum, and Thaumasia. We also used CTX to map a small, unnamed outflow channel system west of Bond Crater, and we have been documenting all of the small Martian volcanoes, typically < 30 km across, including those occurring in the Labyrinthus Noctis. CTX data are widely available, as they are archived with the NASA Planetary Data System on a rolling basis every 6 months.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

MRO Context Camera (CTX) Investigation Primary Mission Results does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with MRO Context Camera (CTX) Investigation Primary Mission Results, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MRO Context Camera (CTX) Investigation Primary Mission Results will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1237369

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.