More on the structure of tidal tails

Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

16 pages, 10 figures, accepted for publication in MNRAS

Scientific paper

We investigate the epicyclic motion of stars escaping from star clusters. Using streaklines, we visualise the path of escaping stars and show how epicyclic motion leads to over- and underdensities in tidal tails of star clusters moving on circular and eccentric orbits about a galaxy. Additionally, we investigate the effect of the cluster mass on the tidal tails, by showing that their structure is better matched when the perturbing effect of the cluster mass is included. By adjusting streaklines to results of N-body computations we can accurately and quickly reproduce all observed substructure, especially the streaky features often found in simulations which may be interpreted in observations as multiple tidal tails. Hence, we can rule out tidal shocks as the origin of such substructures. Finally, from the adjusted streakline parameters we can verify that for the star clusters we studied escape mainly happens from the tidal radius of the cluster, given by x_L = (GM/(\Omega^2-\partial^2\Phi/\partial R^2))^{1/3}. We find, however, that there is another limiting radius, the "edge" radius, which gives the smallest radius from which a star can escape during one cluster orbit about the galaxy. For eccentric cluster orbits the edge radius shrinks with increasing orbital eccentricity (for fixed apocentric distance) but is always significantly larger than the respective perigalactic tidal radius. In fact, the edge radii of the clusters we investigated, which are extended and tidally filling, agree well with their (fitted) King radii, which may indicate a fundamental connection between these two quantities.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

More on the structure of tidal tails does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with More on the structure of tidal tails, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and More on the structure of tidal tails will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-551215

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.