Computer Science – Artificial Intelligence
Scientific paper
2011-06-09
Journal Of Artificial Intelligence Research, Volume 17, pages 83-135, 2002
Computer Science
Artificial Intelligence
Scientific paper
10.1613/jair.970
Recent years are seeing an increasing need for on-line monitoring of teams of cooperating agents, e.g., for visualization, or performance tracking. However, in monitoring deployed teams, we often cannot rely on the agents to always communicate their state to the monitoring system. This paper presents a non-intrusive approach to monitoring by 'overhearing', where the monitored team's state is inferred (via plan-recognition) from team-members' routine communications, exchanged as part of their coordinated task execution, and observed (overheard) by the monitoring system. Key challenges in this approach include the demanding run-time requirements of monitoring, the scarceness of observations (increasing monitoring uncertainty), and the need to scale-up monitoring to address potentially large teams. To address these, we present a set of complementary novel techniques, exploiting knowledge of the social structures and procedures in the monitored team: (i) an efficient probabilistic plan-recognition algorithm, well-suited for processing communications as observations; (ii) an approach to exploiting knowledge of the team's social behavior to predict future observations during execution (reducing monitoring uncertainty); and (iii) monitoring algorithms that trade expressivity for scalability, representing only certain useful monitoring hypotheses, but allowing for any number of agents and their different activities to be represented in a single coherent entity. We present an empirical evaluation of these techniques, in combination and apart, in monitoring a deployed team of agents, running on machines physically distributed across the country, and engaged in complex, dynamic task execution. We also compare the performance of these techniques to human expert and novice monitors, and show that the techniques presented are capable of monitoring at human-expert levels, despite the difficulty of the task.
Kaminka G. A.
Pynadath D. V.
Tambe M.
No associations
LandOfFree
Monitoring Teams by Overhearing: A Multi-Agent Plan-Recognition Approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Monitoring Teams by Overhearing: A Multi-Agent Plan-Recognition Approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monitoring Teams by Overhearing: A Multi-Agent Plan-Recognition Approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-580337