Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-11-30
Astronomy and Astrophysics
Astrophysics
Accepted by MNRAS
Scientific paper
10.1111/j.1365-2966.2008.14295.x
We present observations of the CO(1-0) emission in the central 750 pc (10 arcsec) of the counter-rotating disc galaxy NGC 4550, obtained at the Institut de Radioastronomie Millimetrique (IRAM) Plateau de Bure Interferometer. Very little molecular gas is detected, only 1 x 10^7 solar masses, and its distribution is lopsided, with twice as much molecular gas observed at positive relative velocities than at negative relative velocities. The velocity gradient in the CO(1-0) emission shows that the molecular gas rotates like the thicker of the two stellar discs, which is an unexpected alignment of rotations if the thinner disc was formed by a major gas accretion event. However, a simulation shows that the gas rotating like the thicker disc naturally results from the coplanar merger of two counter-rotating disc galaxies, demonstrating the feasibility of this scenario for the formation of NGC 4550. We investigate various star formation tracers to determine whether the molecular gas in NGC 4550 is currently forming stars. UV imaging data and optical absorption linestrengths both suggest a recent star formation episode; the best-fitting two population model to the UV-optical colours yields a mass of young stars of 5.9 x 10^7 solar masses with an age of 280 Myr. The best information on the current star formation rate is a far infrared-based upper limit of only 0.02 solar masses per year. We are thus witnessing NGC 4550 either in a dip within a bursty star formation period or during a more continuous low-level star formation episode.
Bureau Martin
Combes Francoise
Crocker Alison F.
Jeong Hyunjin
Komugi Shinya
No associations
LandOfFree
Molecular gas and star formation in the red-sequence counter-rotating disc galaxy NGC 4550 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Molecular gas and star formation in the red-sequence counter-rotating disc galaxy NGC 4550, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molecular gas and star formation in the red-sequence counter-rotating disc galaxy NGC 4550 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-647140