Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2011-09-19
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
9 figures (some with reduced resolution) and 1 table. MNRAS in press
Scientific paper
We present smoothed particle hydrodynamic models of the interactions in the compact galaxy group, Stephan's Quintet. This work is extension of the earlier collisionless N-body simulations of Renaud et al. in which the large-scale stellar morphology of the group was modeled with a series of galaxy-galaxy interactions in the simulations. Including thermohydrodynamic effects in this work, we further investigate the dynamical interaction history and evolution of the intergalactic gas of Stephan's Quintet. The major features of the group, such as the extended tidal features and the group-wide shock, enabled us to constrain the models reasonably well, while trying to reproduce multiple features of the system. We found that reconstructing the two long tails extending from NGC 7319 toward NGC 7320c one after the other in two separate encounters is very difficult and unlikely, because the second encounter usually destroys or distorts the already-generated tidal structure. Our models suggest the two long tails may be formed simultaneously from a single encounter between NGC 7319 and 7320c, resulting in a thinner and denser inner tail than the outer one. The tails then also run parallel to each other as observed. The model results support the ideas that the group-wide shock detected in multi-wavelength observations between NGC 7319 and 7318b and the starburst region north of NGC 7318b are triggered by the high-speed collision between NGC 7318b and the intergalactic gas. Our models show that a gas bridge is formed by the high-speed collision and clouds in the bridge continue to interact for some tens of millions of years after the impact. This produces many small shocks in that region, resulting a much longer cooling time than that of a single impact shock.
Appleton Philip
Hwang Jeong-Sun
Renaud Florent
Struck Curtis
No associations
LandOfFree
Models of Stephan's Quintet: Hydrodynamic Constraints on the Group's Evolution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Models of Stephan's Quintet: Hydrodynamic Constraints on the Group's Evolution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Models of Stephan's Quintet: Hydrodynamic Constraints on the Group's Evolution will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-145684