Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

34

Scientific paper

Maps of the vector components of the Mars crustal magnetic field are constructed at the mapping altitude (360 to 410 km) using a selected set of data obtained with the Mars Global Surveyor magnetometer during 2780 orbits of the planet in 1999. Forward modeling calculations are then applied to six relatively strong and isolated, dominantly dipolar, magnetic anomalies for the primary purpose of estimating bulk directions of magnetization. Assuming that the magnetizing field was a (dipolar) core dynamo field centered in the planet, paleomagnetic pole positions are calculated for the six primary source bodies together with that for a seventh anomaly analyzed earlier. In agreement with several previous studies, it is found that six of the seven pole positions are clustered in what is now the northern lowlands in a region centered northwest of Olympus Mons (mean pole position: 34°±10° N, 202°±58° E). Assuming that the dynamo dipole moment vector was approximately parallel to the rotation axis, the modeling results therefore suggest a major reorientation of Mars relative to its rotation axis after magnetization was acquired. Such a reorientation may have been stimulated by internal mass redistributions associated with the formation of the northern lowlands and Tharsis, for example. A comparison of the mean paleo (magnetic) equator to the global distribution of crustal fields shows that magnetic anomalies tend to occur at low paleolatitudes. The same appears to be true for the Noachian-aged valley networks, which exhibit a broad spatial correlation with the magnetic anomalies. A possible interpretation is that the formation of magnetic anomalies and the valley networks was favored in the tropics where melting of water ice and snow was a stronger source of both surface valley erosion and groundwater recharge during the earliest history of the planet. This would be consistent with models in which hydrothermal alteration of crustal rocks played a role in producing the unusually strong martian magnetic anomalies.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-755497

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.