Astronomy and Astrophysics – Astronomy
Scientific paper
Aug 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007apj...665..874a&link_type=abstract
The Astrophysical Journal, Volume 665, Issue 1, pp. 874-883.
Astronomy and Astrophysics
Astronomy
30
Earth, Meteors, Meteoroids, Nuclear Reactions, Nucleosynthesis, Abundances, Solar System: Formation, Stars: Supernovae: General
Scientific paper
High-precision barium isotopic compositions of large samples of an ordinary chondrite and a eucrite are identical to the terrestrial values. In contrast, the carbonaceous chondrites reveal excesses in 135Ba and 137Ba of around +39 and +22 parts per million (ppm), respectively; no anomalies are resolvable in 130,132,138Ba. High-precision Sr isotopic compositions of all meteorites are identical within error. The data are consistent with the carbonaceous chondrites having an excess in the r-process 135,137Ba with respect to Earth, eucrite parent bodies, and ordinary chondrites. The carbonaceous chondrites, however, display no variation in the r- and s-process Sm and Nd isotopes, suggesting that the r-process sources of Ba and the lanthanides were decoupled. The homogeneity of Ba and Sm isotopes in the Earth, eucrite parent body, and ordinary chondrite indicates that the solar nebula that fed planetesimals between ~1 and ~2.4 AU was well mixed with respect to these isotopes. It was heterogeneous beyond ~2.7 AU where carbonaceous chondrite parent bodies formed. These observations also indicate that the best estimate of the Nd isotopic composition of the Earth is obtained from ordinary chondrites and not from carbonaceous chondrites, as is normally assumed. Since the terrestrial upper mantle shows a 142Nd anomaly of +18+/-8 ppm with respect to the ordinary chondrites, this is further evidence that the upper mantle retains a memory of early Earth differentiation and sequestration of a reservoir with an average Sm/Nd ratio lower than that of chondrites.
Andreasen Rasmus
Sharma Mukul
No associations
LandOfFree
Mixing and Homogenization in the Early Solar System: Clues from Sr, Ba, Nd, and Sm Isotopes in Meteorites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mixing and Homogenization in the Early Solar System: Clues from Sr, Ba, Nd, and Sm Isotopes in Meteorites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixing and Homogenization in the Early Solar System: Clues from Sr, Ba, Nd, and Sm Isotopes in Meteorites will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-959293