Mathematics – Numerical Analysis
Scientific paper
2011-03-12
Mathematics
Numerical Analysis
Revision after referee comments
Scientific paper
We show how two-dimensional mixed finite element methods that satisfy the conditions of finite element exterior calculus can be used for the horizontal discretisation of dynamical cores for numerical weather prediction on pseudo-uniform grids. This family of mixed finite element methods can be thought of in the numerical weather prediction context as a generalisation of the popular polygonal C-grid finite difference methods. There are a few major advantages: the mixed finite element methods do not require an orthogonal grid, and they allow a degree of flexibility that can be exploited to ensure an appropriate ratio between the velocity and pressure degrees of freedom so as to avoid spurious mode branches in the numerical dispersion relation. These methods preserve several properties of the C-grid method when applied to linear barotropic wave propagation, namely: a) energy conservation, b) mass conservation, c) no spurious pressure modes, and d) steady geostrophic modes on the $f$-plane. We explain how these properties are preserved, and describe two examples that can be used on pseudo-uniform grids: the recently-developed modified RT0-Q0 element pair on quadrilaterals and the BDFM1-\pdg element pair on triangles. All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of freedom to pressure degrees of freedom. Finally we illustrate the properties with some numerical examples.
Cotter Colin J.
Shipton J.
No associations
LandOfFree
Mixed finite elements for numerical weather prediction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mixed finite elements for numerical weather prediction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixed finite elements for numerical weather prediction will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-279045