Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

short version to appear in Compositio

Scientific paper

Soit $E/\BmQ$ une courbe elliptique. Soit $D<0$ un discriminant fondamental suffisamment grand. Si $E(\bar{\BmQ})$ contient des points de Heegner de discriminant $D$, ces points engendrent un sous-groupe dont le rang est sup\'erieur \`a $\pabs{D}^{0.0009}$. Ce r\'esultat est en accord avec la conjecture de Birch et Swinnerton-Dyer. --- Let $E/\BmQ$ be an elliptic curve. Let $D<0$ be a sufficiently large fundamental discriminant. If $E(\bar{\BmQ})$ contains Heegner points of discriminant $D$, these points generate a subgroup of rank greater than $\pabs{D}^{0.0009}$. This result is in agreement with the conjecture of Birch and Swinnerton-Dyer.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-10714

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.