Mathematics – Number Theory
Scientific paper
2008-11-14
Mathematics
Number Theory
short version to appear in Compositio
Scientific paper
Soit $E/\BmQ$ une courbe elliptique. Soit $D<0$ un discriminant fondamental suffisamment grand. Si $E(\bar{\BmQ})$ contient des points de Heegner de discriminant $D$, ces points engendrent un sous-groupe dont le rang est sup\'erieur \`a $\pabs{D}^{0.0009}$. Ce r\'esultat est en accord avec la conjecture de Birch et Swinnerton-Dyer. --- Let $E/\BmQ$ be an elliptic curve. Let $D<0$ be a sufficiently large fundamental discriminant. If $E(\bar{\BmQ})$ contains Heegner points of discriminant $D$, these points generate a subgroup of rank greater than $\pabs{D}^{0.0009}$. This result is in agreement with the conjecture of Birch and Swinnerton-Dyer.
No associations
LandOfFree
Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Minoration du rang des courbes elliptiques sur les corps de classes de Hilbert will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-10714