Computer Science – Artificial Intelligence
Scientific paper
2009-05-28
Computer Science
Artificial Intelligence
Scientific paper
Formal Concept Analysis (FCA) is a mathematical theory based on the formalization of the notions of concept and concept hierarchies. It has been successfully applied to several Computer Science fields such as data mining,software engineering, and knowledge engineering, and in many domains like medicine, psychology, linguistics and ecology. For instance, it has been exploited for the design, mapping and refinement of ontologies. In this paper, we show how FCA can benefit from a given domain ontology by analyzing the impact of a taxonomy (on objects and/or attributes) on the resulting concept lattice. We willmainly concentrate on the usage of a taxonomy to extract generalized patterns (i.e., knowledge generated from data when elements of a given domain ontology are used) in the form of concepts and rules, and improve navigation through these patterns. To that end, we analyze three generalization cases and show their impact on the size of the generalized pattern set. Different scenarios of simultaneous generalizations on both objects and attributes are also discussed
Boumedjout Lahcen
Kwuida Leonard
Missaoui Rokia
Vaillancourt Jean
No associations
LandOfFree
Mining Generalized Patterns from Large Databases using Ontologies does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mining Generalized Patterns from Large Databases using Ontologies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mining Generalized Patterns from Large Databases using Ontologies will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-294711