Minimum Weight Cycles and Triangles: Equivalences and Algorithms

Computer Science – Data Structures and Algorithms

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We consider the fundamental algorithmic problem of finding a cycle of minimum weight in a weighted graph. In particular, we show that the minimum weight cycle problem in an undirected n-node graph with edge weights in {1,...,M} or in a directed n-node graph with edge weights in {-M,..., M} and no negative cycles can be efficiently reduced to finding a minimum weight triangle in an Theta(n)-node undirected graph with weights in {1,...,O(M)}. Roughly speaking, our reductions imply the following surprising phenomenon: a minimum cycle with an arbitrary number of weighted edges can be "encoded" using only three edges within roughly the same weight interval! This resolves a longstanding open problem posed by Itai and Rodeh [SIAM J. Computing 1978 and STOC'77]. A direct consequence of our efficient reductions are O (Mn^{omega})-time algorithms using fast matrix multiplication (FMM) for finding a minimum weight cycle in both undirected graphs with integral weights from the interval [1,M] and directed graphs with integral weights from the interval [-M,M]. The latter seems to reveal a strong separation between the all pairs shortest paths (APSP) problem and the minimum weight cycle problem in directed graphs as the fastest known APSP algorithm has a running time of O(M^{0.681}n^{2.575}) by Zwick [J. ACM 2002]. In contrast, when only combinatorial algorithms are allowed (that is, without FMM) the only known solution to minimum weight cycle is by computing APSP. Interestingly, any separation between the two problems in this case would be an amazing breakthrough as by a recent paper by Vassilevska W. and Williams [FOCS'10], any O(n^{3-eps})-time algorithm (eps>0) for minimum weight cycle immediately implies a O(n^{3-delta})-time algorithm (delta>0) for APSP.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Minimum Weight Cycles and Triangles: Equivalences and Algorithms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Minimum Weight Cycles and Triangles: Equivalences and Algorithms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Minimum Weight Cycles and Triangles: Equivalences and Algorithms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-167786

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.