Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit

Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Replaced with version published by ApJ. Tables reformatted and minor changes to the text. Full resolution color figures and mo

Scientific paper

10.1088/0004-637X/715/1/335

In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low mass X-ray binary phase pose additional constraints on the period (P) and spin-down rates (Pdot) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age whilst the standard spin-down age may over- or under-estimate the age of the pulsar by more than a factor of ~10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the dominant energy loss mechanism after the onset of radio emission, we test for a range of plausible braking indices. We find that a braking index of n=3 is consistent with the observed MSP population. We demonstrate the existence and quantify the potential contributions of two main sources of age corruption: the previously known "age bias" due to secular acceleration and "age contamination" driven by sub-Eddington progenitor accretion rates. We explicitly show that descendants of LMXBs that have accreted at very low rates will exhibit ages that appear older than the age of the Galaxy. We further elaborate on this technique, the implications and potential solutions it offers regarding MSP evolution, the underlying age distribution and the post-accretion energy loss mechanism.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-384840

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.