Mathematics – Analysis of PDEs
Scientific paper
2011-03-30
Mathematics
Analysis of PDEs
52 pages, 1 figure; to appear in Journal of Functional Analysis
Scientific paper
Working in the time domain, we show that the location of the singularities and the principal symbol of a potential that is conormal to nested submanifolds $S_2 \subset S_1 \subset \mathbb{R}^n$, for $n \geq 3$, can be recovered from the backscattering as well as from the restriction of the far-field pattern to more general determined sets of scattering data. This extends the work of Greenleaf and Uhlmann where the potentials considered are conormal to a single submanifold $S \subset \mathbb{R}^n$. We utilize the microlocal analysis of the wave operator $\square=\partial_t^2 - \triangle_x$ and multiplication by a nested conormal distribution in order to study their action on spaces of conormal-like distributions.
No associations
LandOfFree
Microlocal analysis of scattering data for nested conormal potentials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Microlocal analysis of scattering data for nested conormal potentials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microlocal analysis of scattering data for nested conormal potentials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-569778