Biology
Scientific paper
Nov 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009asbio...9..861b&link_type=abstract
Astrobiology, Volume 9, Issue 9, pp. 861-874.
Biology
Scientific paper
Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithification and, by extension, mineral biosignature formation. The lithifying and non-lithifying mat communities were compared (via 16S rRNA gene sequencing, 485 and 464 sequences, respectively) over both temporal and spatial scales. Seven bacterial groups dominated in all the microbial mat libraries: bacteriodetes, alphaproteobacteria, deltaproetobacteria, chloroflexi, spirochaetes, cyanobacteria, and planctomycetes. The mat communities were all significantly different over space, time, and lithification state. Species richness is significantly higher in the non-lithifying mats, potentially due to differences in mat structure and activity. This increased richness may impact lithification and, hence, biosignature production.
Baumgartner Laura K.
Buckley Daniel H.
Dupraz Christophe
Pace Norman R.
Spear John R.
No associations
LandOfFree
Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1259655