Other
Scientific paper
Jun 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006gecoa..70.3075h&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 70, Issue 12, p. 3075-3095.
Other
Scientific paper
Fluid inclusions in quartz globules and quartz veins of a 3.8 3.7 Ga old, well-preserved pillow lava breccia in the northeastern Isua Greenstone Belt (IGB) were studied using microthermometry, Raman spectrometry and SEM Cathodoluminescence Imaging. Petrographic study of the different quartz segregations showed that they were affected by variable recrystallization which controlled their fluid inclusion content. The oldest unaltered fluid inclusions found are present in vein crystals that survived dynamic and static recrystallization. These crystals contain a cogenetic, immiscible assemblage of CO2-rich (+H2O, +graphite) and brine-rich (+CO2, +halite, +carbonate) inclusions. The gas-rich inclusions have molar volumes between 44.8 and 47.5 cm3/mol, while the brine inclusions have a salinity of ˜33 eq. wt% NaCl. Modeling equilibrium immiscibility using volumetric and compositional properties of the endmember fluids indicates that fluid unmixing occurred at or near peak-metamorphic conditions of ˜460 °C and ˜4 kbar. Carbonate and graphite were precipitated cogenetically from the physically separated endmember fluids and were trapped in fluid inclusions. In most quartz crystals, however, recrystallization obliterated such early fluid inclusion assemblages and left graphite and carbonate as solid inclusions in recrystallized grains. Intragranular fluid inclusion trails in the recrystallized grains of breccia cementing and crosscutting quartz veins have CO2-rich assemblages, with distinctly different molar volumes (either between 43.7 and 47.5 cm3/mol or between 53.5 and 74.1 cm3/mol), and immiscible, halite-saturated H2O CO2 NaCl( other salt) inclusions. Later intergranular trails have CH4 H2 (X up to ˜0.3) inclusions of variable density (ranging from 48.0 to >105.3 cm3/mol) and metastable H2O NaCl( other salt?) brines (˜28 eq. wt% NaCl). Finally, the youngest fluid inclusion assemblages are found in non-luminescent secondary quartz and contain low-density CH4 (molar volume > 105.33 cm3/mol) and low-salinity H2O NaCl (0.2 3.7 eq. wt% NaCl). These successive fluid inclusion assemblages record a retrograde P T evolution close to a geothermal gradient of ˜30 °C/km, but also indicate fluid pressure variations and the introduction of highly reducing fluids at ˜200 300 °C and 0.5 2 kbar. The quartz globules in the pillow fragments only contain sporadic CH4(+H2) and brine inclusions, corresponding with the late generations present in the cementing and crosscutting veins. We argue that due to the large extent of static recrystallization in quartz globules in the pillow breccia fragments, only these relatively late fluid inclusions have been preserved, and that they do not represent remnants of an early, seafloor-hydrothermal system as was previously proposed. Modeling the oxidation state of the fluids indicates a rock buffered system at peak-metamorphic conditions, but suggests a change towards fluid graphite disequilibrium and a logf/fO above the Quartz Fayalite Magnetite buffer during retrograde evolution. Most likely, this indicates a control on redox conditions and on fluid speciation by ultramafic rocks in the IGB. Finally, this study shows that microscopic solid graphite in recrystallized metamorphic rocks from Isua can be deposited inorganically from a fluid phase, adding to the complexity of processes that formed reduced carbon in the oldest, well-preserved supracrustal rocks on Earth.
Appel Peter W. U.
Frezzotti Maria-Luce
Heijlen Wouter
Horsewell Andy
Touret Jacques L. R.
No associations
LandOfFree
Metamorphic fluid flow in the northeastern part of the 3.8 3.7 Ga Isua Greenstone Belt (SW Greenland): A re-evalution of fluid inclusion evidence for early Archean seafloor-hydrothermal systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Metamorphic fluid flow in the northeastern part of the 3.8 3.7 Ga Isua Greenstone Belt (SW Greenland): A re-evalution of fluid inclusion evidence for early Archean seafloor-hydrothermal systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metamorphic fluid flow in the northeastern part of the 3.8 3.7 Ga Isua Greenstone Belt (SW Greenland): A re-evalution of fluid inclusion evidence for early Archean seafloor-hydrothermal systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1060450