Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics
Scientific paper
2009-08-10
Astronomy and Astrophysics
Astrophysics
Galaxy Astrophysics
6 pages, 7 figures, to be published in Astronomische Nachrichten (proceedings of Symposium 6 of the JENAM 2008, Vienna)
Scientific paper
We investigate the role of supernova (SN)-driven galactic winds in the chemical enrichment of the intracluster medium (ICM). Such outflows on galactic scales have their origin in huge star forming regions and expel metal enriched material out of the galaxies into their surroundings as observed, for example, in the nearby starburst galaxy NGC 253. As massive stars in OB-associations explode sequentially, shock waves are driven into the interstellar medium (ISM) of a galaxy and merge, forming a superbubble (SB). These SBs expand in a direction perpendicular to the disk plane following the density gradient of the ISM. We use the 2D analytical approximation by Kompaneets (1960) to model the expansion of SBs in an exponentially stratified ISM. This is modified in order to describe the sequence of SN-explosions as a time-dependent process taking into account the main-sequence life-time of the SN-progenitors and using an initial mass function to get the number of massive stars per mass interval. The evolution of the bubble in space and time is calculated analytically, from which the onset of Rayleigh-Taylor instabilities in the shell can be determined. In its further evolution, the shell will break up and high-metallicity gas will be ejected into the halo of the galaxy and even into the ICM. We derive the number of stars needed for blow-out depending on the scale height and density of the ambient medium, as well as the fraction of alpha- and iron peak elements contained in the hot gas. Finally, the amount of metals injected by Milky Way-type galaxies to the ICM is calculated confirming the importance of this enrichment process.
Baumgartner Verena
Breitschwerdt Dieter
No associations
LandOfFree
Metal enrichment of the intracluster medium: SN-driven galactic winds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Metal enrichment of the intracluster medium: SN-driven galactic winds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal enrichment of the intracluster medium: SN-driven galactic winds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-120481