Mercury dynamics in sulfide-rich sediments: Geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2

Scientific paper

Research concerning the fate and biogeochemical cycling of mercury (Hg) within coastal ecosystems has suggested that microbially mediated diagenetic processes control Hg mobilization and that ligands with strong affinity for Hg, such as dissolved inorganic sulfide (S(-II)) and dissolved organic matter (DOM), control Hg partitioning between the dissolved and particulate phases. We have studied total Hg cycling in the sediments of the Penobscot River estuary using a combination of equilibrium porewater samplers and kinetic modeling. The Penobscot estuary has been subject to Hg contamination from multiple industries including a recently closed chlor-alkali production facility. The Hg concentration within the estuary surface sediments ranges from 1.25 to 27.5 nmol Hg g-1 sediment and displays an association with sediment organic matter and a concentration maximum within 3 cm of the sediment water interface (SWI). Porewater profiles for the Penobscot estuary are divisible into three kinetically discrete intervals with respect to Hg dynamics. Beginning at depth in the sediment and moving upward toward the SWI we have defined: (1) a zone of net Hg solubilization at depth, with a zero-order net Hg production rate (RnetHg)=3.7 5.2×10mol cms, (2) a zone of net Hg consumption within the zone dominated by FeS(s) precipitation with RnetHg=-0.75to-1.4×10mol cms, and (3) a zone of net diffusive transfer within the vicinity of the SWI. Zone 1 is characterized by dissolved S(-II) concentrations ranging from 400 to 500 μM. Equilibrium modeling in this zone suggests that inorganic S(-II) plays the dominant role in both mobilization of sediment-bound Hg and complexation of dissolved Hg. In zone 2, FeS(s) precipitation occurs concomitant with Hg consumption. Net transfer within zone 3 is consistent with the potential for ligand-mediated Hg efflux across the SWI. S(-II)-mediated Hg mobilization at depth in Penobscot estuary sediments suggests a broadening of the depth interval over which biogeochemical Hg cycling must be examined. Our results also show that, while estuary sediments act as a net sink for particulate Hg inputs, they may also function for a considerable time interval as a source of dissolved Hg.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Mercury dynamics in sulfide-rich sediments: Geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Mercury dynamics in sulfide-rich sediments: Geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mercury dynamics in sulfide-rich sediments: Geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-738367

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.