Astronomy and Astrophysics – Astrophysics
Scientific paper
Jan 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004a%26a...414..399p&link_type=abstract
Astronomy and Astrophysics, v.414, p.399-408 (2004)
Astronomy and Astrophysics
Astrophysics
6
Accretion, Accretion Disks, Shock Waves, Instabilities, Ism: Kinematics And Dynamics, Galaxies: Cooling Flows
Scientific paper
We have calculated the evolution of spherical accretion flows undergoing mass-loading from embedded clouds through either conduction or hydrodynamical ablation. We have observed the effect of varying the ratios of the mass-loading timescale and the cooling timescale to the ballistic crossing timescale through the mass-loading region. We have also varied the ratio of the potential energy of a particle injected into the flow near the outer region of mass-loading to the temperature at which a minimum occurs in the cooling curve. The two types of mass-loading produce qualitatively different types of behaviour in the accretion flow, since mass-loading through conduction requires the ambient gas to be hot, whereas mass ablation from clumps occurs throughout the flow. Higher ratios of injected to accreted mass typically occur with hydrodynamical ablation, in agreement with previous work on wind-blown bubbles and supernova remnants. We find that mass-loading damps the radiative overstability of such flows, in agreement with our earlier work. If the mass-loading is high enough it can stabilize the accretion shock at a constant radius, yielding an almost isothermal subsonic post-shock flow. Such solutions may be relevant to cooling flows onto massive galaxies. Mass-loading can also lead to the formation of isolated shells of high temperature material, separated by gas at cooler temperatures.
Ashmore I.
Byfield A.
Dyson John E.
Falle Sam A. E. G.
Hartquist Thomas W.
No associations
LandOfFree
Mass-loaded spherical accretion flows does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mass-loaded spherical accretion flows, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mass-loaded spherical accretion flows will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1837516