Mathematics – Classical Analysis and ODEs
Scientific paper
2009-06-22
Mathematics
Classical Analysis and ODEs
15 pages, 2 figures
Scientific paper
We show sufficient conditions on matrix weights $U$ and $V$ for the
martingale transforms to be uniformly bounded from $L^2(V)$ to $L^2(U)$. We
also show that these conditions imply the uniform boundedness of the dyadic
shifts as well as the boundedness of the Hilbert transform between these
spaces.
No associations
LandOfFree
Martingale transforms, the dyadic shift and the Hilbert transform: a sufficient condition for boundedness between matrix weighted spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Martingale transforms, the dyadic shift and the Hilbert transform: a sufficient condition for boundedness between matrix weighted spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Martingale transforms, the dyadic shift and the Hilbert transform: a sufficient condition for boundedness between matrix weighted spaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-495719