Mathematics – Logic
Scientific paper
2011-09-09
Mathematics
Logic
Scientific paper
There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin's conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this paper, we shall give an overview of some work that has been done on Martin's conjecture, and applications that it has had in descriptive set theory. We will present a long unpublished result of Slaman and Steel that arithmetic equivalence is a universal countable Borel equivalence relation. This theorem has interesting corollaries for the theory of universal countable Borel equivalence relations in general. We end with some open problems, and directions for future research.
Marks Andrew
Slaman Theodore
Steel John
No associations
LandOfFree
Martin's conjecture, arithmetic equivalence, and countable Borel equivalence relations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Martin's conjecture, arithmetic equivalence, and countable Borel equivalence relations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Martin's conjecture, arithmetic equivalence, and countable Borel equivalence relations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-412714