Mathematics – Logic
Scientific paper
Apr 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003eaeja....13927r&link_type=abstract
EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 April 2003, abstract #13927
Mathematics
Logic
Scientific paper
THEMIS (Thermal Emission Imaging System) began mapping operations on February 19, 2002 and is providing both visible and infra-red imaging observations of the martian surface at two scales (18 m/p and 100 m/p respectively). IR observations are being conducted during both day and night. IR imagery records temperature variations, which are primarily due to differences in abundances of rocks, indurated materials, sand, and dust on the surface. THEMIS has imaged all of the major outflow channels and valley networks. The source regions for the outflow channels contain large blocks of collapsed chaotic terrain with very coarse (rocky) slopes and talus aprons while the tops of these blocks appear smooth and mantled with finer grained materials (dust) or alternatively the tops of these blocks may be capped by a different material (relatively finer grained than the lower coarser talus producing material). This suggests that the blocks are made of strongly consolidated material capable of eroding into rocky debris. Layering along with cliff and ledge forming members as well as spur and gully morphology is also seen on the chaotic blocks and suggests materials of varying lithologic strengths. THEMIS IR data also indicates that the streamlined islands are composed of pre-existing laterally extensive, layered, weakly consolidated rock. This observation is based upon the fact that the islands do not exhibit coarse talus aprons unlike the chaotic terrain blocks mentioned above. The streamlined islands appear to be primarily erosional landforms and not depositional. No major depositional bedforms (boulder bars, mega ripples, boulder tails) are seen. This observation (lack of depositional bedforms) may be suggesting information on the consolidation and size of sediment transported by the outflow channels. We propose that the overall sediment transported by the floods was derived from layered weakly consolidated materials that break down into relatively fine-grained material that gets washed through the fluvial system. Sediment will flow over longer distances and have lower settling velocities due to the lower acceleration of gravity on Mars. These factors contribute to allowing the sediment to be deposited over very extensive areas and not in discrete sediment packages (bars and fans). It should also be mentioned that MOC imagery does not reveal any depositional bedforms. These observations and interpretations help explain the lack of major depositional bedforms similar to those associated with catastrophic floods on Earth (Channeled Scabland and Iceland). Clearly, coarse material is seen at the Pathfinder site but the large size material (30 cm and up) was transported only short distances 10's of km (Twin Peaks and other knobby outliers and craters). Additionally, younger post diluvial nearby impact craters have also supplied ejecta material to the Pathfinder site. THEMIS imagery has also discovered and mapped two major flows. One is found near the mouth of the northern branch of Kasei Valles. It shows up well in both day and night IR imagery. Ma’adim Vallis has a flow that can be traced over 150 km from its mouth into the floor of Gusev crater. We suggest that these features are hyperconcentrated flows and not lava flows based on their morphology, geologic setting, and lack of nearby volcanic sources. Valley Networks: Valley Networks have also been imaged with THEMIS. The following observations have been noted. Narrow, incised, discontinuous inner channels with finer grained materials seen on the floors of many valley networks such as Bahram and Nanedi Valles. Stripped channel floors suggesting exhumation of the channel. Valley network dissection also appears much more prevalent in some regions (Libya Montes) than has ever been seen before. This suggests prolonged fluvial activity. Fluvial deposits are also seen at the mouths of many valley networks such as Samara Vallis and an unnamed channel. These terminal deposits are interpreted to be fans.
Christensen Paul
Malin Mike
McEwen Alfred
Rice Jr. J.
Ruff Steve
No associations
LandOfFree
Martian fluvial landforms: a themis perspective after one year at mars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Martian fluvial landforms: a themis perspective after one year at mars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Martian fluvial landforms: a themis perspective after one year at mars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-845998