Marius Hills: Surface Roughness from LROC and Mini-RF

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[5464] Planetary Sciences: Solid Surface Planets / Remote Sensing, [5470] Planetary Sciences: Solid Surface Planets / Surface Materials And Properties, [5480] Planetary Sciences: Solid Surface Planets / Volcanism

Scientific paper

The Lunar Reconnaissance Orbiter Camera (LROC) Team is collecting hundreds of high-resolution (0.5 m/pixel) Narrow Angle Camera (NAC) images of lunar volcanic constructs (domes, “cones”, and associated features) [1,2]. Marius Hills represents the largest concentration of volcanic features on the Moon and is a high-priority target for future exploration [3,4]. NAC images of this region provide new insights into the morphology and geology of specific features at the meter scale, including lava flow fronts, tectonic features, layers, and topography (using LROC stereo imagery) [2]. Here, we report initial results from Mini-RF and LROC collaborative studies of the Marius Hills. Mini-RF uses a hybrid polarimetric architecture to measure surface backscatter characteristics and can acquire data in one of two radar bands, S (12 cm) or X (4 cm) [5]. The spatial resolution of Mini-RF (15 m/pixel) enables correlation of features observed in NAC images to Mini-RF data. Mini-RF S-Band zoom-mode data and daughter products, such as circular polarization ratio (CPR), were directly compared to NAC images. Mini-RF S-Band radar images reveal enhanced radar backscatter associated with volcanic constructs in the Marius Hills region. Mini-RF data show that Marius Hills volcanic constructs have enhanced average CPR values (0.5-0.7) compared to the CPR values of the surrounding mare (~0.4). This result is consistent with the conclusions of [6], and implies that the lava flows comprising the domes in this region are blocky. To quantify the surface roughness [e.g., 6,7] block populations associated with specific geologic features in the Marius Hills region are being digitized from NAC images. Only blocks that can be unambiguously identified (>1 m diameter) are included in the digitization process, producing counts and size estimates of the block population. High block abundances occur mainly at the distal ends of lava flows. The average size of these blocks is 9 m, and 50% of observed blocks are between 9-12 m in diameter. These blocks are not associated with impact craters and have at most a thin layer of regolith. There is minimal visible evidence for downslope movement. Relatively high block abundances are also seen on the summits of steep-sided asymmetrical positive relief features (“cones”) atop low-sided domes. Digitization efforts will continue as we study the block populations of different geologic features in the Marius Hills region and correlate the results with Mini-RF data, which will provide new information about the emplacement of volcanic features in the region. [1] J.D. Stopar et al., LPI Contribution 1483 (2009) 93-94. [2] S.J. Lawrence et al. (2010) LPSC 41 #1906. [2] S.J. Lawrence et al. (2010) LPSC 41 # 2689. [3] C. Coombs & B.R. Hawke (1992) 2nd Proc. Lun. Bases & Space Act. 21st Cent pp. 219-229. [4]J.Gruener and B. Joosten (2009) LPI Contributions 1483 50-51. [5] D.B.J. Bussey et al. (2010) LPSC 41 # 2319. [6] B.A. Campbell et al. (2009) JGR-Planets, 114, 01001. [7] S.W. Anderson et al. (1998) GSA Bull, 110, 1258-1267.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Marius Hills: Surface Roughness from LROC and Mini-RF does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Marius Hills: Surface Roughness from LROC and Mini-RF, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Marius Hills: Surface Roughness from LROC and Mini-RF will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1495858

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.