Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5

Scientific paper

Mn(II) oxidation in the suboxic zone of the water column was studied at four stations in the western Black Sea. We measured Mn(II) oxidation rates using 54Mn tracer and tested the hypothesis of alternative oxidants for Mn(II) other than dissolved oxygen. In anoxic incubation experiments with water from different depths of the chemocline, Mn(II) was not oxidized by nitrite, nitrate, or iodate. In the presence of light, Mn(II) also was not oxidized under anoxic conditions as well. Anaerobic Mn(II) oxidizing microorganisms could not be enriched. In oxic incubation experiments, the addition of alternative oxidants did not significantly increase the Mn(II) oxidation rate. The lack of an anaerobic Mn(II) oxidation in our experiments does not unambiguously prove the absence of anaerobic Mn(II) oxidation in the Black Sea but suggests that dissolved oxygen is the only oxidant for biologically catalyzed Mn(II) oxidation. Lateral intrusions of modified Bosphorus water were shown to be the main mechanism providing dissolved oxygen in the suboxic and the upper anoxic zones and explaining observed Mn(II) oxidation rates. Maximum in situ Mn(II) oxidation rates in the suboxic zone were 1.1 nM Mn(II) per h in the central Black Sea, 25 nM Mn(II) per h on the Romanian continental slope and 60 nM Mn(II) per h on the Anatolian continental slope. These rates correlate with the amount of particulate Mn and the number of Mn-oxide particles and are in agreement with rates measured 13 yr before. Our study highlights the importance of lateral intrusions of oxygen for the ventilation of the suboxic zone and the anoxic interior and for the regulation of different oxidation-reduction processes in the chemocline, including Mn(II) oxidation, which may be significant for other anoxic basins as well.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1434684

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.