Making the long code shorter, with applications to the Unique Games Conjecture

Computer Science – Computational Complexity

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

45 pages

Scientific paper

The long code is a central tool in hardness of approximation, especially in questions related to the unique games conjecture. We construct a new code that is exponentially more e?cient, but can still be used in many of these applications. Using the new code we obtain exponential improvements over several known results, including the following: 1. For any eps > 0, we show the existence of an n vertex graph G where every set of o(n) vertices has expansion 1 - eps, but G's adjacency matrix has more than exp(log^delta n) eigenvalues larger than 1 - eps, where delta depends only on eps. This answers an open question of Arora, Barak and Steurer (FOCS 2010) who asked whether one can improve over the noise graph on the Boolean hypercube that has poly(log n) such eigenvalues. 2. A gadget that reduces unique games instances with linear constraints modulo K into instances with alphabet k with a blowup of K^polylog(K), improving over the previously known gadget with blowup of 2^K. 3. An n variable integrality gap for Unique Games that that survives exp(poly(log log n)) rounds of the SDP + Sherali Adams hierarchy, improving on the previously known bound of poly(log log n). We show a connection between the local testability of linear codes and small set expansion in certain related Cayley graphs, and use this connection to derandomize the noise graph on the Boolean hypercube.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Making the long code shorter, with applications to the Unique Games Conjecture does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Making the long code shorter, with applications to the Unique Games Conjecture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Making the long code shorter, with applications to the Unique Games Conjecture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-327627

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.