Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

46 pages; 2 figures

Scientific paper

We study the distribution of the zeros of functions of the form $f(s)=h(s) \pm h(2a-s)$, where $h(s)$ is a meromorphic function, real on the real line, $a$ a real number. One of our results establishes sufficient conditions under which all but finitely many of the zeros of $f(s)$ lie on the line $\Re s = a$, called the {\it critical line} for the function $f(s)$, and be simple, given that all but finitely many of the zeros of $h(s)$ lie on the half-plane $\Re s < a$. This results can be regarded as a generalization of the necessary condition of stability for the function $h(s)$, in the Hermite-Biehler theorem. We apply this results to the study of translations of the Riemann Zeta Function and $L$ functions, and integrals of Eisenstein Series, among others.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-325044

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.