Mathematics – Number Theory
Scientific paper
2007-12-08
Mathematics
Number Theory
46 pages; 2 figures
Scientific paper
We study the distribution of the zeros of functions of the form $f(s)=h(s) \pm h(2a-s)$, where $h(s)$ is a meromorphic function, real on the real line, $a$ a real number. One of our results establishes sufficient conditions under which all but finitely many of the zeros of $f(s)$ lie on the line $\Re s = a$, called the {\it critical line} for the function $f(s)$, and be simple, given that all but finitely many of the zeros of $h(s)$ lie on the half-plane $\Re s < a$. This results can be regarded as a generalization of the necessary condition of stability for the function $h(s)$, in the Hermite-Biehler theorem. We apply this results to the study of translations of the Riemann Zeta Function and $L$ functions, and integrals of Eisenstein Series, among others.
No associations
LandOfFree
Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Majoration du nombre de zéros d'une fonction méromorphe en dehors d'une droite verticale et applications will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-325044