Magnetic Shearing Instablilities in Accretion Disks

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We modify the force equations of a weakly magnetized disk to include a diffusive term. This term is meant to approximate the effects of nonlinear turbulence in the disk. The Velikhov-Chandrasekhar instability appears as a local instability centered on a corotation radius. Imposing the natural boundary condition that the instability vanishes far from this radius eliminates the instability in the absence of noise or dissipation. The diffusive term restores it. We combine our equations to give a sixth order equation in the radial velocity. We examine this equation for meanful singularities using a local Taylor expansion. Real singularities in the complex frequency plane can imply the existence of branch lines, which will permit the existence of localized solutions corresponding to physically interesting instabilities. Having determined the singularities we plot their behavior as a function of the diffusion coeficient. Finally, we solve the original equation using the natural boundary conditions and discuss the application of our solutions to real, localized disk instabilities.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Magnetic Shearing Instablilities in Accretion Disks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Magnetic Shearing Instablilities in Accretion Disks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic Shearing Instablilities in Accretion Disks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1318988

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.