Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2010-04-26
Geophys. Astrophys. Fluid Dyn. 104, 577-590 (2010)
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
12 pages, 5 figures, submitted to GAFD
Scientific paper
10.1080/03091929.2010.506438
We present the results of simulations of forced turbulence in a slab where the mean kinetic helicity has a maximum near the mid-plane, generating gradients of magnetic helicity of both large and small-scale fields. We also study systems that have poorly conducting buffer zones away from the midplane in order to assess the effects of boundaries. The dynamical alpha quenching phenomenology requires that the magnetic helicity in the small-scale fields approaches a nearly static, gauge independent state. To stress-test this steady state condition we choose a system with a uniform sign of kinetic helicity, so that the total magnetic helicity can reach a steady state value only through fluxes through the boundary, which are themselves suppressed by the velocity boundary conditions. Even with such a set up, the small-scale magnetic helicity is found to reach a steady state. In agreement with earlier work, the magnetic helicity fluxes of small-scale fields are found to be turbulently diffusive. By comparing results with and without halos, we show that artificial constraints on magnetic helicity at the boundary do not have a significant impact on the evolution of the magnetic helicity, except that "softer" (halo) boundary conditions give a lower energy of the saturated mean magnetic field.
Brandenburg Axel
Hubbard Alexander
No associations
LandOfFree
Magnetic helicity fluxes in an alpha-squared dynamo embedded in a halo does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Magnetic helicity fluxes in an alpha-squared dynamo embedded in a halo, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic helicity fluxes in an alpha-squared dynamo embedded in a halo will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-32837